Tradewater US – ODS - #1

April 13, 2023

Tradewater, LLC

Table of Contents

Table of Contents	2
A. PROJECT OVERVIEW	5
A1. PROJECT TITLE	6
A2. PROJECT TYPE	6
A3. PROOF OF PROJECT ELIGIBILITY	6
A4. LOCATION	9
A5. BRIEF SUMMARY OF PROJECT	10
A6. PROJECT ACTION	11
A7. EX-ANTE OFFSET PROJECTION	12
A8. PARTIES	13
Tradewater, LLC – Project Proponent	13
B. METHODOLOGY	14
B1. APPROVED METHODOLOGY	15
B2. METHODOLOGY JUSTIFICATION	15
B3. PROJECT BOUNDARIES	15
B4. IDENTIFICATION OF GHG SOURCES AND SINKS	16
B5. BASELINE	17
B6. PROJECT SCENARIO	
B7. REDUCTIONS AND ENHANCED REMOVALS	18
B8. PERMANENCE	18
C. ADDITIONALITY	19
C1. REGULATORY SURPLUS TEST	20
C.2 COMMON PRACTICE TEST	20
C.3 IMPLEMENTATION BARRIERS TEST	20
C4. PERFORMANCE STANDARD TEST	20
D. MONITORING PLAN	23
D1. MONITORED DATA AND PARAMETERS	24
E. QUANTIFICATION	26
E1. BASELINE	27

E2. PROJECT SCENARIO	27
E3. LEAKAGE	
E4. UNCERTAINTY	
E5. REDUCTIONS AND REMOVAL ENHANCEMENTS	29
E6. EX-ANTE ESTIMATION METHODS	29
F. COMMUNITY & ENVIRONMENTAL IMPACTS	
F1. NET POSITIVE IMPACTS	
F2. STAKEHOLDER COMMENTS	
G. OWNERSHIP AND TITLE	
G1. PROOF OF TITLE	
G2. CHAIN OF CUSTODY	
G3. PRIOR APPLICATION	
H. PROJECT TIMELINE	
H1. START DATE	
H2. PROJECT TIMELINE	

A. PROJECT OVERVIEW

A1. PROJECT TITLE

Tradewater US – ODS - #1 (hereinafter referred to as "Project").

A2. PROJECT TYPE

Ozone Depleting Substances

A3. PROOF OF PROJECT ELIGIBILITY

The project is eligible under "The Methodology for the Quantification, Monitoring, Reporting, and Verification of Greenhouse Gas Emissions Reductions and Removals from the Destruction of Ozone Depleting Substances and High-GWP Foam, Version 1.2." Revised Quantification of emissions is based on version 2.0 of the Methodology. Additional eligibility requirements as noted in the ACR Standard, Version 7.0 are included below.

Criterion	Requirement	Proof of Project Eligibility
Location	Project located in the United States	Destruction occurred at Heritage
	or its territories.	Thermal Services, located in East
		Liverpool, OH, United States.
ODS Material	Only the destruction of eligible ODS	The only ODS that will be included for
	refrigerants CFC-11, CFC-12, CFC-13,	crediting will be eligible refrigerants.
	CFC-113, CFC-114, CFC-115, and	
	HCFC-22 are eligible under this	
	Methodology.	
Stockpile	Any refrigerants obtained from a	No refrigerants in this project originate
Limitation	government stockpile or inventory	from an ineligible government stockpile
	are eligible only if they are allowed to	or inventory.
	be sold into commercial markets for	
	subsequent use and are not required	
	to be destroyed or converted.	
Start Date	Project start date is defined as the	The project start date and destruction
	date on which the earliest	commencement date are the same date
	destruction activity of a project	as documented on the included
	commences, documented on a	Certificate of Destruction.
	Certificate of Destruction.	
Reporting Periods	Reporting period must not exceed 12	Project reporting period begins on the
	consecutive months. Project	project start date and does not exceed
	reporting period begins on the	12 months. This reporting period is
	project start date.	provided in the included Monitoring
		Report.
Crediting Periods		Project crediting period begins on the
	Project crediting period is ten years	project start date and will be ten years
	and begins on the project start date.	under version 1.2 of the Methodology.
	(v.1.2); The project crediting period is	The crediting period is provided in the
	equal to the reporting period.	included Monitoring Report. The

Table 1: Applicability Requirements from the Methodology sections 2.2.1 and 3.

	crediting period under version 2.0 is the
	same as the reporting period.

Table 2: Applicability Requirements from the ACR Standard version 7.0, Chapter 3 (not already covered in the Methodology)

Criterion	Requirement	Proof of Project Eligibility
Minimum Project	The duration of the Minimum Project	There is no risk of reversal for this
Term	Term for specific project types is	project, so the minimum project term is
	defined in the relevant ACR sector	not applicable.
	requirements and/or methodology.	
	Project types with no risk of reversal	
	after crediting have no required	
	Minimum Project Term.	
Real	GHG reduction and removals shall	The GHG reductions occurred after the
	result from an emission mitigation	ODS was destroyed, and prior to the
	activity that has been conducted in	verification process and credit issuance.
	accordance with an approved ACR	
	methodology and is verifiable. Credits	
	will not be issued on an ex-ante basis.	
Emission or	For projects reducing or removing	Tradewater LLC is the project proponent
Removal Origin	direct emissions, the following	and owns the ODS obtained for this
	requirement applies: The Project	project.
	Proponent shall own, have control	
	over, or document that effective	
	control exists over the GHG sources	
	and/or sinks from which the	
	emissions reductions or removals	
	originate.	
Offset Title	Project Proponent shall provide	Tradewater, LLC has provided
	documentation and attestation of	documentation of undisputed title to all
	undisputed title to all offsets prior to	offsets. Title to offsets is clear, unique,
	registration, including chain of	and uncontested. No offsets have been
	custody documentation if offsets	sold in the past.
	have ever been sold in the past. Title	
	to offsets shall be clear, unique, and	
	uncontested.	
Additional	Every project shall use either an ACR-	The project passes the ACR-approved
	approved performance standard and	performance standard and regulatory
	pass a regulatory surplus test, as	surplus test.
	detailed in the applicable	
	methodology, or pass a three-	There is no mandate for the destruction
	pronged test of additionality in which	of ODS CFC refrigerant. In the absence
	the project must: 1. Exceed	of this project, the ODS refrigerant
	regulatory/legal requirements; 2. Go	would have been vented or leaked into
	beyond common practice; and 3.	the atmosphere under business-as-usual

	Overcome at least one of three	scenarios. The project sources meet all
	implementation barriers:	other requirements of the Methodology.
	institutional, financial, or technical	
Regulatory	Projects must maintain material	This project maintains regulatory
Compliance	regulatory compliance. To do this, a	compliance through the entirety of the
	regulatory body/bodies must deem	reporting period.
	that a project is not out of	
	compliance at any point during a	
	reporting period.	
Permanent	For projects with a risk of reversal of	There is no risk of reversal of GHG
	GHG removal enhancements, Project	removal enhancements for this project
	Proponents shall assess risk using an	type.
	ACR-approved risk assessment tool.	
Net of Leakage	ACR requires Project Proponents to	Leakage is not applicable to this project
	address, account for, and mitigate	type.
	certain types of leakage, according to	
	the relevant sector requirements and	
	methodology conditions. Project	
	Proponents must deduct leakage that	
	reduces the GHG emissions reduction	
	and/or removal benefit of a project in	
	excess of any applicable threshold	
	specified in the methodology.	
Independently	ACR requires third-party validation of	This project is validated and verified by a
Validated	the GHG Project Plan by an	third-party ACR-approved VVB in
	accredited, ACR-approved VVB once	accordance with the ACR standard.
	during each Crediting Period and	
	prior to issuance of ERTs. Validation	
	can be conducted at the same time	
	and by the same VVB as a full	
	verification; however, the deadline	
	for validation is determined by the	
	methodology being implemented and	
	the project Start Date (see above).	
	Governing documents for validation	
	are the ACR Standard, including	
	sector-specific requirements, the	
	relevant methodology, and the ACR	
	Validation and Verification Standard.	
Independently	Verification must be conducted by an	This project is validated and verified by a
Verified	accredited, ACR-approved VVB prior	third-party ACR-approved VVB in
	to any issuance of ERTs and at	accordance with the ACR standard.
	minimum specified intervals. ACR	
	requires verifiers to provide a	
	reasonable, not limited, level of	
	assurance that the GHG assertion is	

	without material discrepancy. ACR's	
	materiality threshold is ±5%.	
Community and	ACR requires that all projects develop	The Project maintains a net positive
Environmental	and disclose an impact assessment to	impact, as the quantified amount of
Impacts	ensure compliance with	GHG emissions has been eliminated and
	environmental and community	serves as an effort against climate
	safeguards best practices.	change.
	Environmental and community	
	impacts should be net positive, and	Upon careful examination, no negative
	projects must "do no harm" in terms	impacts from the project have been
	of violating local, national, or	identified. Destruction of ODS
	international laws or regulations.	refrigerant is highly monitored by the
	Project Proponents must identify in	destruction facility, and destruction
	the GHG Project Plan community and	occurred within all applicable regulatory
	environmental impacts of their	limits for emissions and local
	project(s). Projects shall also disclose	environmental impact.
	and describe positive contributions as	
	aligned with applicable sustainable	
	development goals. Projects must	
	describe the safeguard measures in	
	place to avoid, mitigate, or	
	compensate for potential negative	
	impacts, and how such measures will	
	be monitored, managed, and	
	enforced. ACR does not require that a	
	particular process or tool be used for	
	the impact assessment as long as	
	basic requirements defined by ACR	
	are addressed (See Chapter 8). ACR	
	projects can follow internationally	
	recognized approaches such as The	
	World Bank Safeguard Policies, or can	
	be combined with the Climate	
	Community and Biodiversity Alliance	
	(CCBA) Standard or the Social Carbon	
	Standard for the assessment,	
	monitoring, and reporting of	
	environmental and community	
	impacts.	

A4. LOCATION

All collected ODS refrigerant was destroyed at Heritage Thermal Services, located at 1250 Saint George Street, East Liverpool, Ohio 43920, USA.

GPS Coordinates: Latitude: 40.6313189 Longitude: -80.5485483

A5. BRIEF SUMMARY OF PROJECT

Description of Project Activity

The project activity is the destruction of eligible ODS refrigerant, mainly R-11 and R-113, for which ownership was transferred to Tradewater for the purpose of destruction. The ODS was acquired from a variety of sources and included nine points of origin located across TX, IL, FL, NY, CA, MD, and AL.

All ODS refrigerant in this project was sourced either through recovery from units such as decommissioned building chillers, or from disposable cylinders and cans containing virgin material. In the case of recoveries, Tradewater either performed the recovery ourselves or the material was previously recovered by another party. Under business-as-usual, the refrigerant would either remain in storage until use (in the case of stockpiles) or used in chiller systems still utilizing older refrigerant, like R-11 and R-113. In either case, the ODS will eventually vent, either through leakage resulting from corrosion of the storage container or through inefficiencies, break-downs, or mishandling of equipment. The refrigerants included in this project were no longer needed for use, and their risk of venting is thereby mitigated by destruction at Heritage Thermal Services, an eligible destruction facility.

Background Information

Refrigerants such as R-11 and R-113 were historically used in centrifugal chillers, as propellants, and in other cooling systems. All refrigerants under this methodology were banned from production by 1996

under the Montreal Protocol as they were found to be both an ozone depleting substance and contributor to greenhouse gas emissions. Although their production was banned, their usage was not, and many chillers and other cooling systems across the United States still use R-11, R-113, and other low-pressure CFC refrigerants. Due to decreased supply and the advancement of technologies, as well as the implementation of HFC refrigerants, many R-11 and R-113 chillers are decommissioned or updated to utilize newer and less harmful refrigerants. As such, stockpiles of R-11 and R-113 used for recharging chillers and the material in the chillers themselves require an end-of-life solution, one of which is destruction.

Project Purpose and Objectives

The purpose of this project is to offset the emissions that would have been released by these refrigerants in non-use instead of collected and destroyed.

A6. PROJECT ACTION

Description of Prior Physical Conditions

In the business-as-usual scenario, ODS refrigerants are recovered from old equipment and sold or exchanged for continued use by owners of this antiquated equipment, or left for storage until a use can be determined. Under either scenario, ODS refrigerant will ultimately leak into the atmosphere – either because the containers in which they are held degrade or slowly leak, or the equipment that contains the refrigerant suffer from accidental release during handling and transfer.

Description of how the Project will Achieve GHG Reductions

This Project achieves emissions reductions through the destruction of ODS refrigerant instead of allowing the refrigerant to be redeployed into equipment or systems, or held in containers at risk of eventual leakage or release. This Project measures the amount of assumed emissions if the ODS were vented under business-as-usual scenario against the emissions prevented by the destruction of the same material. Plainly, destruction yields significantly lower net emissions than the business-as-usual scenario.

Description of Project Technologies, Products, Services, and Expected Level of Activity

After the ODS refrigerant is recovered from equipment or aggregated from various storage situations, they are consolidated into half-ton cylinders at the Tradewater facility. From there, the cylinders are consolidated into a single ISO tank, which is sent to a destruction facility for incineration.

Tradewater anticipates future ODS refrigerant projects for as long as the recovery, reclamation, and eventual retirement of ODS refrigerant remains business as usual.

A7. EX-ANTE OFFSET PROJECTION

The ex-ante offset projection is not applicable to this methodology, as emissions reductions are calculated for the 10-year crediting period in the first reporting period. The total emissions reductions for this reporting period are 27,748 tCO₂e under version 1.2 of the Methodology.

ACR updated the methodology to version 2.0 in February 2023. Version 2.0 updated the quantification method to include end of life emissions allowing 100% of emissions to be accounted for in quantifying offsets. Using the updated quantification method, the new total emission reductions from this project is 31,818 tCO2e.

Project	Methodology Version	Location	Vintage	Project Emissions (tCO2e)	Baseline Emissions (tCO2e)	Total ERTs
Tradewater US – ODS - #1	1.2	North America	2022	1,463	29,211	27,748
Tradewater US – ODS - #1	2.0	North America	2022	52	31,870	31,818
	Outstan	ding Emiss	ions Redu	ctions		4,070

Table 3: Parties involved in Project						
Entity	Name	Role/Title	Contact Info	Responsibility		
Tradewater,	Timothy H.	Chief Executive	1550 W Carroll Ave,	Project Proponent –		
LLC	Brown	Officer	Suite 213Chicago, IL	coordination of		
			60607	validation and		
			312-273-5122 x 1000	verification of project		
	Gabriel	Chief Operating	1550 W Carroll Ave,	Project Proponent –		
	Plotkin	Officer	Suite 213Chicago, IL	coordination of project		
			60607	implementation		
			312-273-5122 x 1004			
Heritage	Steve Lorah	Materials	1250 Saint George St	Destruction Facility		
Thermal		Processing	East Liverpool, OH			
Services		Manager	43920			
			877-436-8778			

A8. PARTIES

Tradewater, LLC – Project Proponent

Tradewater has been in operation since 2016 and is a mission-driven company. Tradewater's aim is to collect and destroy greenhouse gases while creating economic opportunity. Tradewater engages in this work both in the US and internationally and has a goal of eliminating 3 million tons of CO₂e annually.

Heritage Thermal Services – Destruction Facility

Tradewater engaged Heritage Thermal Services for the destruction of the ODS refrigerant. Heritage Thermal Services is a subsidiary of Heritage Environmental. Heritage was founded in the 1970s and remains a private family-owned operation. Headquartered in Indianapolis, the destruction facility in East Liverpool, OH was not established until 2005. HTS utilizes a rotary kiln incineration process and manages a wide array of RCRA-hazardous and non-hazardous wastes.

B. METHODOLOGY

B1. APPROVED METHODOLOGY

The Project uses the Methodology for the Quantification, Monitoring, Reporting and Verification of Greenhouse Gas Emissions Reductions and Removal from the Destruction of Ozone Depleting Substances and High-GWP Foam Version 1.2 (hereinafter referred to as "Methodology"). Updated quantifications are based on version 2.0 of this Methodology.

B2. METHODOLOGY JUSTIFICATION

The Project involves the destruction of ODS refrigerants R-11 and R-113 with trace amounts of R-114. There is no requirement in the U.S. that CFC refrigerants be destroyed. Because these refrigerants have been phased out worldwide and there are less impactful substitutes, and their production has been banned, their destruction will not trigger any additional CFC refrigerant production.

B3. PROJECT BOUNDARIES

The geographic boundary of the Project is Heritage Thermal Services, located at 1250 Saint George St., East Liverpool, OH 43920, USA. The reporting period is 2/5/2022 to 2/7/2022, and the crediting period is 2/5/2022 to 2/4/2032 (under Version 1.2 of the Methodology) and 2/5/2022 to 2/7/2022 (under Version 2.0 of the Methodology).

Additional SSRs within the project boundaries are ODS use and Transport to Destruction Facility (Version 1.2 of the Methodology):

Additional SSRs withing the project boundaries are transport to the destruction facility and recovered ODS stockpiles under version 2.0 of the Methodology. Note that ODS substitutes have been eliminated:

B4. IDENTIFICATION OF GHG SOURCES AND SINKS

Table 4: Greenhouse Gases and Sources (source: Methodology)				
GHG Source, Sink, or Reservoir (SSR)	Source Description	Gas	Quantification Method	Methodology Version
Transport to Destruction Facility	Fossil fuel emissions from the vehicular transport of ODS from aggregation point to final destruction facility.	CO ₂	$Tr\&Dest = (Q_{ODS} \times EF) + (Q_{BA} \times EF) + (Q_{intf} \times EF)$	1.2 and 2.0
ODS Use	Emissions of ODS from use, leaks, and servicing through	ODS	$BE_{refr} = \sum_{i} (Q_{ref,i} \times ER_{refr,i} \times GWP_{i})$	1.2

	continued			
	operation of			
	equipment.			
ODS Use	Emissions of	CO ₂ e	$Sub_{refr} = \sum (Q_{refi} \times SE_i)$	1.2
	substitute from			
	use, leaks, and			
	servicing			
	through			
	continued			
	operation of			
	equipment.			
Destruction	Emissions of	ODS	$Tr \& Dest = (Q_{ODS} \times EF) + (Q_{BA} \times EF)$	1.2 and 2.0
	ODS from		$+ (Q_{intf} \times EF)$	
	incomplete			
	destruction at			
	destruction			
- · · · ·	facility.			
Destruction	Emissions from	CO_2	$Tr \& Dest = (Q_{ODS} \times EF) + (Q_{BA} \times EF)$	1.2 and 2.0
	the oxidation of		$+ (Q_{intf} \times EF)$	
	carbon			
	contained in			
Destauration	destroyed ODS.	60	$T_{rel} D_{rel} (0, y, EE) + (0, y, EE)$	1.2 and 2.0
Destruction	FOSSII TUEI	CO_2	$Tr \& Dest = (Q_{ODS} \times EF) + (Q_{BA} \times EF)$	1.2 and 2.0
	emissions from		$+ (\mathbf{Q}_{intf} \times \mathbf{EF})$	
	the destruction			
	of ODS at			
	destruction			
Destauration	Tacility.	60	Tat^{0} Dest = (0 × EE) + (0 × EE)	1.2 and 2.0
Destruction	indirect	CO2	$Ir@Dest = (Q_{0DS} \times EF) + (Q_{BA} \times EF)$	1.2 and 2.0
	the use of grid		$+ (\mathbf{Q}_{intf} \times \mathbf{E}\mathbf{r})$	
	delivered			
	alactricity			
Decevered	Electricity.	0.05	∇	2.0
ODS Stocknilo	ODS from	005	$BE_{refr} = \sum_{i} (Q_{ref,i} \times GWP_{i})$	2.0
			- i	
	stockniles and			
	FOL equipment			
	(if not sent for			
	destruction)			

B5. BASELINE

The baseline scenario selected for the project is that related to ODS refrigerant, in which the following emissions rates are assumed under business-as-usual:

Refrigerant Type	10-Year Cumulative Emissions Rate	10-Year Cumulative Emissions Rate
	(%/10 years) (V1.2 of Methodology)	(%/10 years) (V2.0 of Methodology)
CFC-11	89%	100%
CFC-12	95%	100%
CFC-13	61%	100%
CFC-113	89%	100%
CFC-114	78%	100%
CFC-115	61%	100%
HCFC-22	72%	100%
HCFC-123	N/A	100%

These emission rates are determined by the Methodology (V1.2 Appendix A, Table 4; V2.0 section 3.8).

There is no law or regulation mandating the destruction of ODS refrigerant, although these refrigerants have been phased out of production and import since January 1, 1994. The refrigerants still in use in the United States were manufactured prior to the ban and are either used in existing equipment or in storage until a use can be found. As many systems are modernized to accept currently manufactured refrigerant (HFCs), there is less of a need for CFC refrigerants. Many sources are looking for an end solution for stockpiled or otherwise obsolete CFC refrigerant, with destruction being one solution.

Further, excess CFCs without a particular use remain in storage, where they risk leaking. The ultimate fate of these refrigerants is release into the atmosphere, either slowly overtime from leaks in equipment or storage, or in accidental venting during routine maintenance of existing systems. Such use and leaks are accounted for in the emissions rates.

B6. PROJECT SCENARIO

The project scenario is the destruction of eligible CFC refrigerants which would otherwise be removed from decommissioned equipment, reclaimed and used in existing antiquated systems, or stored indefinitely until a use for the refrigerants could be found. With the ban on production for these refrigerants, more and more systems and chillers are being retrofitted or decommissioned and can no longer support the use of these refrigerant types.

B7. REDUCTIONS AND ENHANCED REMOVALS

Through this project, greenhouse gas reductions are achieved by preventing the inevitable release of the refrigerant ODS into the atmosphere—either through leakage from degrading systems and storage, or from accidental venting during routine maintenance. The reductions are calculated by baseline emissions minus the project emissions.

B8. PERMANENCE

There is no risk of reversal for these project offsets, as once destroyed the associated GHG reductions are fixed.

C. ADDITIONALITY

C1. REGULATORY SURPLUS TEST

In order to pass the regulatory surplus test, a project must not be mandated by existing laws, regulations, statutes, legal rulings, or other regulatory frameworks in effect as of the start date that directly or indirectly affect the credited offsets. CFC refrigerants are regulated under the Clean Air Act, 40 CFR Part 82, Subpart F. Neither these regulations, nor any other existing laws, regulations, statutes, legal rulings, or other regulatory frameworks in effect as of February 2022 require the project activity and its associated GHG emission reductions/removal enhancements. Therefore, the project passes the Regulatory Surplus test.

C.2 COMMON PRACTICE TEST

Not applicable.

C.3 IMPLEMENTATION BARRIERS TEST

Not applicable.

C4. PERFORMANCE STANDARD TEST

Refrigerant ODS in a business-as-usual scenario is used only when the existing systems are old enough to still process this type of refrigerant. When this is not the case, ODS refrigerant is either stored in their original disposable containers for possible use, recovered and stored in larger containers for possible use, or recovered from existing systems in the process of decommissioning or retrofitting, thereby requiring an end-of-life solution for that material. All ODS sourced for this project came from the United States, not from any government stockpiles or installations, and was destroyed at a RCRA-permitted destruction facility.

ODS	100-year Global Warming Potential (MT CO2e/MT ODS) (Version 1.2 of Methodology)	10-Year Cumulative Emission Rate (%/10 years) (Version 1.2 of Methodology)	100-year Global Warming Potential (MT CO2e/MT ODS) (Version 2.0 of Methodology)	10-Year Cumulative Emission Rate (%/10 years) (Version 2.0 of Methodology)
CFC-11	4,750	89%	4,663	100%
CFC-12	10,900	95%	10,239	100%
CFC-13	14,400	61%	13,893	100%
CFC-113	6,130	89%	5,824	100%
CFC-114	10,000	78%	8,592	100%
CFC-115	7,370	61%	7,665	100%
HCFC-22	1,810	72%	1,764	100%
HCFC-123	N/A	N/A	79	100%

The GWP for each refrigerant species is above. The GHG emissions generated by the project are significantly less than the business-as-usual scenario for all refrigerant types, and the emissions reductions are greater than those in the baseline scenario.

The CFC ODS sourced for this project, along with the project activities, meet the eligibility requirements:

- This material would otherwise eventually be vented into the atmosphere in the business-asusual scenario
- The material was destroyed via an eligible destruction facility
- Point of Origin and Chain of Custody for this material is outlined in the supporting documents, located in the folder titled "Consolidated Shipments"
- Tradewater has monitored the applicable SSRs within the project boundary
- The emissions have been quantified aligned with Chapter 5 of the Methodology, as indicated in section E and shown in the Project Assertion Spreadsheet.

D. MONITORING PLAN

D1. MONITORED DATA AND PARAMETERS

Data or Parameter Monitored	Legal Requirement Test
Unit of Measurement	N/A
Description	Emissions reductions achieved through this project
	existing law or regulation
Data Source	US EPA
Measurement Methodology	N/A
Data Uncertainty	Low
Monitoring Frequency	Once per project
Reporting Procedure	Review of existing laws around ODS refrigerant
	management
QA/QC Procedure	Regular review of current laws and regulations
	surrounding ODS refrigerants, particularly CFCs.
Notes	

Data or Parameter Monitored	Mass of ODS mixture in each container
Unit of Measurement	Pounds
Description	The total quantity of ODS refrigerant in a
	container.
Data Source	Weight tickets taken pre and post destruction for
	each individual container
Measurement Methodology	Section 5.1 of Methodology
Data Uncertainty	Low
Monitoring Frequency	Once per project
Reporting Procedure	Gross weight of cylinders using calibrated scale,
	taken before and after destruction
QA/QC Procedure	Scale calibrations performed monthly; CEMs data
	confirms destruction and weight throughout
	process
Notes	

Data or Parameter Monitored	Concentration of ODS mixture in each container
Unit of Measurement	Percent
Description	The distribution of ODS refrigerant in each
	container (along with any other contaminants,
	moisture, or HBR)
Data Source	Sample data via lab analysis provided by an AHRI-
	certified, third party laboratory.
Measurement Methodology	Appendix C of Methodology

Data Uncertainty	Low
Monitoring Frequency	Once per project
Reporting Procedure	Lab analysis report
QA/QC Procedure	Composition and concentration are analyzed at an AHRI-certified laboratory that is not affiliated with the project proponent using the AHRI Standard 700.
Notes	

Data or Parameter Monitored	Q _{refr,i}
Unit of Measurement	Pounds
Description	The total weight of ODS refrigerant sent for
	destruction.
Data Source	Weight tickets taken both pre- and post-
	destruction coupled with lab analysis
Measurement Methodology	Section 5.1 of Methodology
Data Uncertainty	Low
Monitoring Frequency	Once per project
Reporting Procedure	Net weight of cylinders using calibrated scale
QA/QC Procedure	Scale calibrations performed monthly; CEMs data
	confirms destruction; lab analysis confirms mass
	percentage and identification of ODS refrigerant
Notes	

Data or Parameter Monitored	Q _{ODS}
Unit of Measurement	Pounds
Description	The total quantity of ODS refrigerant sent for
	destruction.
Data Source	Weight tickets taken both pre- and post-
	destruction coupled with lab analysis and
	quantifications
Measurement Methodology	Section 5.2 of Methodology
Data Uncertainty	Low
Monitoring Frequency	Once per project
Reporting Procedure	Net weight of cylinders using calibrated scale; lab
	analysis
QA/QC Procedure	Scale calibrations performed monthly; CEMs data
	confirms destruction; lab analysis confirms mass
	percentage and identification of ODS refrigerant
Notes	

E. QUANTIFICATION

E1. BASELINE

The baseline emissions are: 29,211 tCO₂e under version 1.2 of the Methodology. The baseline emissions are 31,870 tCO2e under version 2.0 of the Methodology. For details, please see Appendix A (Project Assertion Spreadsheet).

Total Baseline Emissions (V.1.2):

$$BE_{refr} = \sum_{i} (Q_{ref,i} \times ER_{refr,i} \times GWP_{i})$$

Total Baseline Emissions (V.2.0)

$$BE_{refr} = \sum_{i} (Q_{ref,i} \times GWP_{i})$$

Where		Units
BE _{refr}	Total quantity of refrigerant project baseline emissions during the reporting	MT CO ₂ e
	period	
Q _{ref,i}	Total quantity of refrigerant ODS sent for destruction by the offset project	
ER _{refr,i}	10-year cumulative emission rate of refrigerant ODS	%
GWP _i	Global warming potential of ODS	MT CO ₂ e /
		MT ODS

E2. PROJECT SCENARIO

The project emissions are: 1,463 tCO₂e under version 1.2 of the Methodology. The project emissions are 52 tCO2e under version 2.0 of the Methodology. Please see Appendix A for details (Project Assertion Spreadsheet).

Total Project Emissions (v.1.2):

$$PE_t = Sub_{refr} + Sub_{fs} + Sub_{aer} + Rem_f + Tr \& Dest$$

Total Project Emissions (V.2.0):

$$PE_t = Rem_f + Tr \& Dest$$

Where		Units
PE _t	Total quantity of project emissions during the reporting period	MT CO ₂ e
Sub _{refr}	Total GHG emissions from substitute refrigerant	MT CO ₂ e

Sub _{fs}	Total GHG emissions from substitute fire suppressant	MT CO ₂ e
Sub _{aer}	Total GHG emissions from substitute medical aerosol	MT CO ₂ e
Rem _f	Total GHG emissions from removal of high GWP foam in a non-enclosed	MT CO ₂ e
	equipment de-manufacturing system	
Tr&Dest	Total GHG emissions from transportation and destruction of ODS and high-	MT CO ₂ e
	GWP insulation foam/blowing agents	

Total Emissions of Non-ODS Refrigerant (V.1.2 only)

$$Sub_{refr} = \sum_{i} (Q_{ref,i} \times SE_{i})$$

Where		Units
Sub _{refr}	Total quantity of refrigerant substitute emissions	MT CO ₂ e
Q _{ref,i}	Total quantity of refrigerant <i>i</i> sent for destruction	MT ODS
SE _i	Emission factor for substitute(s) for refrigerant <i>i</i> , per Table 4	MT CO ₂ e/
		MT ODS
		destroyed

Project Emissions from Transportation and Destruction Using the Default Emission Factors (V.1.2 and V.2.0):

$$Tr\&Dest = (Q_{ODS} \times EF) + (Q_{BA} \times EF) + (Q_{intf} \times EF)$$

Where		Units
Tr&Dest	Total GHG emissions from ODS and high-GWP insulation foam/blowing	MT CO ₂ e
	agent transportation and destruction, as calculated using default emission	
	factors	
Q _{ODS}	Total quantity of refrigerant, medical aerosol, and/or fire suppressant ODS	MT ODS
	sent for destruction in the project	
Q_{BA}	Total quantity of high-GWP blowing agent extracted from insulation foam	MT BA
	and sent for destruction in the project	
Q _{intf}	Total mass of intact foam with entrained high-GWP blowing agent sent for	MT
	destruction	
EF	Default emission factor for transportation and destruction of ODS or High-	MT CO ₂ e/
	GWP Blowing Agent foam (7.5 for refrigerant, medical aerosol, fire	MT ODS/
	suppressant or extracted blowing agent projects, 7.5 for intact high-GWP	MT BA or
	foam projects)	MT

E3. LEAKAGE

As defined by the ACR Standard V 7.0, leakage is a term that refers to secondary effects where the GHG emission reductions of a project may be negated by shifts in market activity or shifts in materials, infrastructure, or physical assets associated with the project. Projects involving the destruction of CFC refrigerant would not encourage the increase of CFC production. Therefore, for this Methodology, "leakage" is not applicable.

E4. UNCERTAINTY

Calculating uncertainty is not applicable because the methodology as written does not require statistical sampling, nor is it a requirement within the quantifications.

E5. REDUCTIONS AND REMOVAL ENHANCEMENTS

The emissions reductions are: 27,748 tCO₂e under version 1.2 of the Methodology. The emissions reductions are 31,818 tCO2e under version 2.0 of the Methodology. The project emissions are quantified using the below equation indicated in the Methodology, and further details are available in Appendix A:

$\mathbf{ER}_{t} = \mathbf{BE}_{t} - \mathbf{PE}_{t}$

WHERE		UNITS
ER _t	Total quantity of GHG emission reductions during the reporting period	MT CO ₂ e
BEt	Total quantity of project baseline emissions during the reporting period	MT CO ₂ e
PEt	Total quantity of project emissions during the reporting period	MT CO ₂ e

E6. EX-ANTE ESTIMATION METHODS

Ex-ante estimation methods are not applicable to this methodology, as the emissions reductions for the 10-year crediting period are determined in the first reporting period (V.1.2). Under version 2.0 of the Methodology, this remains not-applicable as the emissions reductions for the crediting period are equivalent to the time period and reductions of the reporting period.

F. COMMUNITY & ENVIRONMENTAL IMPACTS

F1. NET POSITIVE IMPACTS

The net positive impacts from the project include the reductions of inevitable emissions of CFC refrigerants from the older equipment and storage via leaks, testing, accidental venting, or from container degradation. By destroying ODS refrigerants recovered from end-of-life equipment or from long storage, there is incentive to transition to safe and effective refrigerant alternatives, including many with reduced or little climate impact. Destruction of CFC refrigerants will not trigger any additional CFC production because of the complete phaseout of CFCs worldwide. This further encourages innovation within development of more sustainable refrigeration and cooling technologies, as well as encouraging the entire sector to develop technologies that are more responsible and aligned with climate goals. Finally, the emissions reductions resulting from this project help to achieve climate goals by eliminating additional contributors to climate change and global warming.

SDG Statement

The following Sustainable Development Goals (SDGs) are relevant to this project:

- SDG 9: Industry, Innovation, and Infrastructure
- SDG 12: Responsible Consumption and Production
- SDG 13: Climate Action F2.

SDG 9: Industry, Innovation, and Infrastructure: As ODS refrigerants are either destroyed or utilized, innovation is required to replace the refrigerants with a less harmful, yet equally as effective, alternative to meet the needs for cooling, refrigeration, and climate controlled transport throughout the world.

SDG 12: Responsible Consumption and Production: By eliminating harmful CFCs, entities requiring refrigerant for their operations will need to shift to a more sustainable and climate-friendly approach. Consumers will naturally move in the direction of lower impact refrigerants as old systems utilizing CFCs break down or CFC sources become harder to find.

SDG 13: Climate Action: By eliminating ODS refrigerants through destruction, these high GWP and ozone depleting substances will not be released into the atmosphere, whether through accidental release via maintenance or mishandling, or from storage degradation overtime. The reduction of greenhouse gas emissions is a key step to reach the goals of the Paris Agreement, namely keeping global temperature increase under 2 degrees Celsius above preindustrial levels.

F2. STAKEHOLDER COMMENTS

Not applicable for this project.

G. OWNERSHIP AND TITLE

G1. PROOF OF TITLE

Tradewater, LLC is the Project Proponent. Tradewater possesses the title and rights to all refrigerants destroyed under this Project, which is demonstrated by Refrigerant Purchase Agreements (RPAs) or other similar documentations. As such, the rights and title to all carbon offset credits created by this Project belong to Tradewater, LLC.

G2. CHAIN OF CUSTODY

Chain of custody is not needed in this project because the offsets have not been bought or sold previously, and the project does not have a forward option contract.

G3. PRIOR APPLICATION

The project proponent has not applied for GHG emission reductions or removal credits for the project through any other GHG emissions trading system or program.

H. PROJECT TIMELINE

H1. START DATE

The Project start date is February 5, 2022-- the date on which the earliest destruction activity of the project commenced. The Project start date determination is consistent with the ACR Standard and Methodology.

H2. PROJECT TIMELINE

Relevant Project Activities	Timeline
Project Listed/Initiation of Project Activities	January 14, 2022
Project Term	N/A
Crediting Period	February 5, 2022 – February 4, 2032 (v.1.2)
	February 5, 2022 – February 7, 2022 (v.2.0)
Reporting Period	February 5, 2022 – February 7, 2022
Frequency of Monitoring, Reporting, and Verification	Once per reporting period

I. Methodology Update Version

This version of the Tradewater US – ODS - #1 project plan has been edited to reflect changes implemented by the current version of the Methodology as of February 2023 (Methodology for the Quantification, Monitoring, Reporting, and Verification of Greenhouse Gas Emissions Reductions and Removals from the Destruction of Ozone Depleting Substances and High-GWP Foam V2.0). The chart below demonstrates the change in emissions reductions from the time of initial verification to present as well as the outstanding credits.

Methodology Version	Vintage	Baseline Emissions (tCO2e)	Project Emissions (tCO2e)	Emissions Reductions (tCO2e)		
1.2	2022	29,211	1,463	27,748		
2.0	2022	31,870	52	31,818		
	4,070					

Reference Values Obtained from ODS Protocol

						CFC-12	CFC-11	CFC-13	CFC-113	CFC-114	CFC-115	HCFC-22	HCFC-123		
10-Year Cumulative Emissions Rate (%/10 Years)		ER	100%	100%	100%	100%	100%	100%	100%	100%	Sec. 3.8				
Refrigerant Substitute Emissions Factor (tCO2e/tODS)		SE	0	0	0	0	0	0	0	0	N/A Under V2.0				
Global Warming Potential (tCO2e/tODS)		GWP	10239	4663	13893	5824	8592	7665	1764	79	Appendix A (Table 4)				
Default Emission Factor for Transportation and Destruction of ODS (tCO2e/tODS)			EF	7.5							Sec. 6.5				
			Moasure	ad Values											
COD		Refrigerant Type	Mass of ODS in COD in LBS	Concentration of ODS in Tranche	Gross Quantity of Refrigerant Destroyed (lbs)	Moisture Reduction	High Boiling Residue Reduction	Total Eligible Refrigerant Destroyed (Ibs)	Quantity of Refrigerant Detroyed (metric tonnes)	GHG Emissions from Substitute Refrigerants	Quantity of ODS Transported to Destruction Facility	Transportation and Destruction Default Emissions Factor (tCO2e)	Total Project Emissions (tCO2e)	Total Project Baseline Emissions (tCO2e)	Total GHG Emissions Reductions (tCO2e)
			m	с	Qg	mr	hbr	Q	Q _{ref}	Sub _{ref}	Qt	Def	PE	BE _{ref}	ER
					Q _g = m x c			$Q = Q_g - (Q_g \times mr) + (Q_g \times hbr)$	Qref = Q x .45359/1000	Sub _{ref} = Qref x SE		$Def = Q_t \times EF$	PE = Sub _{ref} + Def	Be _{ref} =Q _{ref} x ER x GWP	ER = BE _{ref} - PE
	EURU502032 - 9 - T158208 (1)	CFC-12		0.03%	4.58			4.41	0.00	0.00				20	
032 - 9 - T1	EURU502032 - 9 - 1158208 (1)	CFC-11		66.34%	10136.75		9753.03	4.42	0.00				20629		
		CFC-13		0.00%	0.00			0.00	0.00	0.00	6.93086 51.98			0	
	EURU502032 - 9 - 1158208 (1)	CFC-113	15280.0	28.98%	4428.14	0.000035 0.03782	0.03782	4260.52	1.93	0.00		51.98	52	11255	5 31881
	(1)	CFC-114		0.01%	1.53			1.47	0.00	0.00				6	
	(1)	CFC-115		0.00%	0.00			0.00	0.00	0.00			0)	
	(1) FURU502032 - 9 - T158208	HCFC-22		0.00%	0.00			0.00	0.00	0.00				0	0
	(1)	HCFC-123		4.33%	661.62			636.60	0.29	0.00				23	
032 - 9 - T1	EURU502032 - 9 - T158208 (2)	CFC-12		0.02%	3.06			2.94	0.00	0.00				14	
	EURU502032 - 9 - T158208 (2)	CFC-11		66.45%	10153.56		9761.75	4.43	0.00				20647		
	EURU502032 - 9 - T158208 (2)	CFC-13		0.00%	0.00		0.00	0.00	0.00				0	J	
	EURU502032 - 9 - 1158208 -1 ⁽²⁾	CFC-113	15280.0	28.81%	4402.17	0.000028	0.03856	4232.30	1.92	0.00	6.93086	51.98	52	11180	31818
	(2) (2)	CFC-114		0.01%	1.53			1.47	0.00	0.00				6	ō
	(2)	CFC-115		0.00%	0.00			0.00	0.00	0.00			0)	
	EURU502032 - 9 - T158208 (2)	HCFC-22		0.00%	0.00			0.00	0.00	0.00				0	
	EURU502032 - 9 - T158208	HCFC-123		4.48%	684,54			658.15	0.30	0.00				24	
	1-/								0.50	0.00			52	31870	31818